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DEDICATED TO THE MEMORY OF GEZA FREUD

Let {Pn}:~o be the sequence of orthonormal polynomials associated with the
weight exp( - j(x)), x E (- 00, 00), where j is a polynomial of even degree with
positive leading coefficient. The coefficients of the three-term recurrence relation

are shown to be unique "admissible" solution of the equations

Fn(a, b) = 0,

Gn(a,b)=O,

n= 1, 2,...,

n =0,12, .."

already considered by Freud for j(x) = x 2m• Using these equations, we prove an
important special case of Freud's Conjecture. More precisely, we establish the
asymptotic behaviour of {an} and {hn} for the weight exp( -j(x)). Further, we
suggest extensions of the method used here, which should lead to a proof in the
general case j(x) = Ixl", IX> 1. © 1986 Academic Press, Inc.

1. INTRODUCTION

The elements of description of the classical orthogonal polynomials are
generating functions, differential equations, differential relations, Rodrigues
formula, and explicit formulas for the coefficients in the three-term
recurrence relation. Each of these elements have been extended, giving rise
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to families of nonclassical orthogonal polynomials (Pollaczek's generating
function, functional relations and equations, discrete Rodrigues for
mula-see [14, Chap. 6; 19; 62; 73; 74].

This paper is concerned with a technique which produces usually implicit
equations for the coefficients an and bn in the three-term recurrence
relation. Using these equations, we show how to deduce properties of {an}
and {b n }, especially their asymptotic behavior.

To discuss the results, we need some notation. Throughout, let m be a
positive integer, and let f(x) be a polynomial of even degree, with positive
leading coefficient, so that

Further, let

2m

f(x) = L Ci X
2m

-
i
,

i~O

w(x) = exp( - f(x)),

xER,co>O.

xER,

(1.1)

(1.2)

and let Pn, n = 0, 1,2,..., be the orthonormal polynomials with respect to w,
so that

k i=n.
k=n,

(1.3)

Let 'Yn >°denote the leading coefficient of Pn' n = 0, 1,2,.... The orthonor
mal polynomials satisfy the three term recurrence relation

n=O, 1,2,..., (1.4)

with ao=O and an = 'Yn-tl'Yn, n= 1, 2,3,....
A concise description of (1.4) uses the Jacobi matrix

(1.5)

and the column vector

f
PO(X)]

p=p(x)= Pl(X) .
P2(X)
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Clearly we may rewrite (1.3) in the form

xp=Ap.

By repeatedly applying (1.6), we obtain
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(1.6)

j=o, 1,2,...,

and hence for any polynomial Q(x),

Q(x) p = Q(A} p. (1.7)

Given nonnegative integers j and k, (p)j will denote the element in the
U+ l)th row of p, while (Q(A)t,k will denote the element in the U+ l)th
row and (k+ l}th column of Q(A). Using (1.7) and orthonormality, we see
that

{OJ Q(x)Pj(x)Pk(x)w(x)dx= fXl (Q(x)p)jPk(x)w(x)dx
-00 -00

= fOJ (Q(A) p)j Pk(x) w(x) dx.
- OJ

=(Q(A))j,k,j,k=O,I,2,.... (1.8)

Throughout, given sequences of real numbers a = (aj, a2 , a3 , ... ) and b =
(b o, b l , b2 , ... ), we define the associated Jacobi matrix A by (1.5) and can
define

Fn(a, b) = an(f'(A))n n-l,

Gn(a, b) =!'(AY)n,n,

n = 1, 2, 3,... ,

n = 0,1,2, ....

(1.9 )

(1.10)

The equations on which we base our analysis are described by the
following lemma:

LEMMA 1.1. Let f and w be given by (1.1) and (1.2), respectively. Then
the coefficients {an} and {bn} in the recurrence relation (1.4) satisfy the
equations

Fn(a, b) = an(f'(A))n,n-1 =n,

Gn(a, b)=!,(A)n,n=O,

Proof Let

In,k ={OJ (PnPn-k)'(X) w(x) dx,
-CXJ

n = 1, 2,3, ...,

n = 0, 1,2,....

k = 0, n = 0, 1, 2, ...,

(1.11)

(1.12 )

k=l,n=1,2,3,.... (1.13)
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We see that, by orthogonality,

In,o=2 foo Pn(X)p~(x)w(x)dx=O,
-00

while integrating by parts,

In,o= p~(X) W(X)I~oo - f~oo p~(X) W'(X) dx

= foo p~(X)f'(x)w(x)dx=(f'(A))n,n,
-00

by (1.8). Thus (1.12) is valid. Next, by (1.13),

In. 1 = fOO P~(X)Pn_l(x)w(x)dx+ fOO Pn(X)P~_l(x)w(x)dx
-00 -00

= nynf00 (Xn- 1 + ... )Pn_ 1(X) W( X) dx +0
-00

(by orthogonality and where

=nYn/Yn-l =n/an,

is a polynomial of degree ~ n - 2)

(1.14)

by (1.3) and (1.4). Next, integrating by parts, as above, we see that

In, 1 = fOO Pn(X) Pn-l(X) f'(X) W(X) dx = (f'(A))n,n-U (1.15)
-00

by (1.8). Thus (1.11) also follows. I
In this paper, we shall call (1.11) and (1.12) Freud's equations, although

they can be traced back to Laguerre [24] (see [38] for additional referen
ces). However, Freud [16-18] initiated investigation of the properties of
the solutions of (1.11) and (1.12). We remark that it is possible to define
analogues of (1.11) and (1.12) even when w'(x)/w(x) is a rational function;
see Shohat [72].

Some facts on the algebra of tridiagonal matrices and their consequences
on the form of the Freud's equations are gathered in the two following
letrtmas.

LEMMA 1.2. Let A be the Jacobi matrix (1.5). Then

(i) The matrix A k is a symmetric band matrix of bandwidth 2k + 1,

if Ijl > k.
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(ii) The extreme elements of the (n + l)th row of A k are
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(A k)n,n_k=anan_l"' an_k+l,

(A k)n,n+k=an+l an+2'" an+ko

n=k, k+ 1,...,

n=O,l, ....

(iii)
anan- 1 ••• an_J+ 1 is a factor of (Ak)n.n~J

an+1 an+2 '" an+J is a factor of (Ak)n,n+J

1~i~k,

1~i~k.

(iv) Let
i= 1, 2, 3, ,

i=O, 1,2, , (1.17)

then (Ak)n,n+J is a homogeneous polynomial of degree k in the variables

X2n +2-k+J' X2n+3-k+J"'" x2n+k+J-l' X2n +k+J' -k~i~k.

Proof These properties are established by induction on k. The sum

1

(Ak)n,n+J= I (A)n,n+l Ak - 1 )n+i,n+J
i~ -1

(1.18)

contains at most three terms. If (i) is true for k - 1, it holds for k, as iii > k
implies Ii - il > k - 1. If Iii = k, (Ak)n,n + J reduces to a single term
an(A k- 1 )n_l,n_k ifj= -k, an+l(A k- 1)n+l,n+k if j=k and (ii) follows. If
the first part of (iii) is true for (A k- 1 )n,n_J,j:;:.1, then the two last terms of

(Ak)n,n_ J= an(A k- 1 )n-l,n- J+ bn(A k- 1 )n,n- J+ an+I(A k- 1 )n + l,n- J

contain the required factor, and so does the first one, thanks to the an
factor, even if j = 1 (n - j = n - 1 - (j - 1)). The second part follows from
the symmetry of A k.

For the proof of (iv), (1.18) is written

1

(Ak)n,n+J= I X2n+i+l(Ak-l)n+i,n+J'
i~ -1

If (iv) is true for k - 1, (k:;:. 2) each term depends on

and X2n+i-k+J+3"'" x 2n + i+k+ J-l

provided Ii - il ~ k - 1 (otherwise, the term vanishes). We want to show
that these variables are indeed in the set

{X2n+2-k+J'"'' X2n +k+J},

640/46/1·6
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i.e.,
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2n + 2 - k + i ~ 2n + i + 1 ~ 2n + k +i,

2n+2-k+i~2n+ i-k+i+ 3~2n+ i+k+i-1 ~2n+k+i,

if Iil ~ 1 and Ii - il ~ k - 1. This is readily checked: the last inequality
implies

i+k~i+1 and i-k~i-1. I

LEMMA 1.3. With f given by (1.1), the general form of Fn(a, b) and
Gn(a, b) is

(1.19)

m-l

Gn(a, b)= L C2i Q2lan-m+2+i"'" an+m-l-i;bn-m+l+i,"" bn+m-1-J
i=O

+C2i +1 Q2i+ 1(an- m+2+i,"" an+m-l- i;bn- m+2+i,···, bn+m- 2-J,
(1.20)

where Pi and Qi are homogeneous polynomials of respective degrees
2m - i - 2 (P2m _ 1 == 0) and 2m - i - 1.

Proof We just have to apply Lemma 1.2, especially (iv) to (1.11) and
(1.12), where

2m-l

f'(A)= L d2m-i)A 2m - i- 1.
i~O

Indeed, from Lemma 1.2(iv); (A 2m - i- 1)n,n_l depends on X2n+i-2m+2"'"
X2n-i+2m-2" and (A 2m - i- 1)n,n depends on X2n +i-2m+3"'" X2n+2m-i-l'
Equations (1.19) and (1.20) follow then from (1.16) and (1.17). From Lem
ma 1.2(iii), an is a factor of (A 2m - i- 1)n,n_l, i=O, ..., 2m-2, and therefore
a~ is a factor of Fn(a, b). I

At this stage, a simple example facilitates understanding and allows to
check the preceding lemmas.
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EXAMPLE 1.4. (cf. Bauldry [4]). Let m = 2. Then (1.11) and (1.12) take
the form

Fn(a, b) = a~[4cO(a~_1 +b~_1 + bn- 1bn+a~ + b~ + a~+ 1)

+3c1(bn_ 1+ bn)+ 2c2 ] = n,

n = 1, 2, 3,...,

Gn(a, b) = 4co(a~bn_l + 2a~bn + b~ + 2a~+ 1 bn+ a~+ 1 bn+1)

+3Cl(a~ + b~ + a~+ 1) + 2c2 bn+ C3 = 0,

n = 0, 1,.... (1.22)

Recall that ao= O.

We shall use the usual 0,0, and'" notation. Thus, for example, cn"'dn if
for large enough n, the ratio cn/dn is bounded above and below by positive
constants independent of n. Throughout C, C1, C2, C3, ... , denote positive
constants independent of n.

The paper is organized as follows: In Section 2, we investigate unicity of
the solutions of (1.11) and (1.12). In Section 3, we find bounds for the
solutions, and in Section 4, we investigate the asymptotic behaviour of cer
tain approximation solutions. In Section 5, we estimate a certain Frechet
derivative associated with (Fn , Gn ), n = 1, 2, ..., and in Section 6, we prove
our main result, Theorem 6.1, which proves the Freud's Conjecture (cf.
[16-18]) for w(x)=exp( - f(x)) given by (1.1) and (1.2), and we also give
an estimate for the remainder. Finally, in Section 7, we outline steps which
should lead to a proof of Freud's Conjecture for w(x)=exp(-lxi lX

), all
IX> 1.

It is noteworthy that the results of this paper will have several
applications. For the special case g(x) = x 2m

, Mate, Nevai, and Zaslavsky
[43] used the results of [38] and [40] to obtain an asymptotic expansion
for an ( cf. [5]), and Nevai [55] used these asymptotics to find sharp
bounds for the corresponding orthogonal polynmials (cf. [10] and [31 J).
Asymptotic expansions for the recurrence coefficients are essential
ingredients for investigating properties of the zeros of the orthogonal
polynomials (cf. [17, 18, 41, 42, 44, 52, 55, 56, 64-66, 75~78]), and for
finding various asymptotics for the orthogonal polynomials, a program
initiated by P. Nevai and his students (cf. [4,52-56,67,68]). We refer to
Nevai's survey [57] for additional information.

2. UNICITY OF ADMISSIBLE SOLUTIONS

In this section, we shall prove that Eqs (1.11) and (1.12) have a unique
"admissible" solution. First, however, we need a definition of admissibility:
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DEFINITION 2.1. Let f and w be given by (1.1) and (1.2), respectively.
We say that real numbers a=(a l , a2' a3 , ... ) and b=(bo, b l , b2,... ) form an
admissible solution of (1.11) and (1.12) if they satisfy (1.11) and (1.12) and
if an> 0, n = 1, 2, 3,....

We shall prove

THEOREM 2.2. Let f and w be given by (1.1) and (1.2), respectively. Then
(1.11) and (1.12) have a unique admissible solution.

First, however, we need

LEMMA 2.3. Let f and w be given by (1.1) and (1.2), respectively. Let
f3(t), t E ( - 00, (0), be a monotone increasing function such that all moments
of df3 are finite, and assume that

fOO P(x) f'(x) df3(x) = foo P'(x) df3(x),
-~ -00

(2.1 )

for all polynomials P. Further assume that f3 is normalized so that

f3( - 00 ) =°and

fOO df3(x) = foo w(x) dx.
-00-00

Then f3 is absolutely continuous in (- 00, (0), and

(2.2)

f3'(x) = w(x), XE(-oo,oo). (2.3)

Proof We shall use ideas from [11] and [12], in a suitably modified
form. Let

/In = foo x ndf3(x),
-00

n = 0, 1,2,....

Step 1. Estimation of /lw We have, by (2.1),

fOO x n + I f'(x)df3(x)=(n+1)f
oo

x ndf3(x),
-00 -00

which implies

fOO x n [xf'(x)-(n+1)] df3(x) =0,
-00

n=O, 1,2,...,

n=O, 1,2,.... (2.4)

Now, by (1.1), there exists C I >0, C2 , C 3 , C4 such that
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Let
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n= 1, 2,3, .... (2.6)

For n large enough (2.5) shows that if Ixl ~ Xn' then

xf'(x)- (n+ 1)~ C1(n+ 2)/C1 - (n + 1) = 1.

Now we are able to find a bound for j,ln when n is even and large enough:

j,ln= f x ndf3(x) +f xndf3(x).
Ixl ,:; Xn Ixl ;;, Xn

The first integral is of course bounded by (Xnr J':'oo df3(x). The second one,
as l~xf'(x)-(n+l), is bounded by

f x n[xf'(x)-(n-1)]df3(x)
Ixl;;' Xn

= - f xn[xf'(x)-(n+ 1)] df3(x) (by (2.4))
Ixl <Xn

~f xn[C2x2m+C3+n+1]df3(x) (by (2.5))
Ixl < Xn

~ (Xnr[C2(Xn)2m + C3 +n + 1] f') df3(x).
- 00

The definition (2.6) of Xn shows that a bound

j,ln ~ (Cn r/(2m j

holds for n even and large enough.

(2.7)

Step 2. Fourier transform identity. We shall use (2.1) and (2.7) to show
that for each fixed real t,

foo eitxf'(x) df3(x) = it foo eitXdf3(x).
-00 -00

(2.8 )

Note first, that (2.8) is true if we replace eitx by its partial sums. More
precisely, by (2.1), for n = 1, 2, 3,...,
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To prove (2.8) from (2.9), we must estimate

and

T2(n) = f~oo !e
itX

- ~~ (itX)Jjj!! df3(x).

By applying Taylor's formula to the real and imaginary parts of e iU
, we

deduce that for n = 1, 2, 3,...,

U E ( - 00, (0) (2.10)

(cf. Freud [15, p. 79J). Hence if n is even,

Tl(n)~2IW+l foo Ixln+11f'(x)1 df3(x)j(n+ I)!
-00

~ 21W+ l{ C2J1n+2m + C3 J1n}j(n + I)!

= O(IW+ In(n+2m)/(2m)jn!) -t 0 as n -t 00

(by (2.5))

(by (2.7))

since 2m> 1. In a similar, but easier, manner, we may use (2.10) to show
that T 2(n) -t 0, n -t 00, n even. Clearly then (2.8) now follows.

Step 3. Completion of the proof First, letting t = 0 in (2.8), we obtain

foo f'(x) df3(x) = O.
-00

Further, letting t -t 00 in (2.8), we see that

lim foo eitXdf3(x) = O.
t~ 00 -00

(2.11 )

It then follows from Theorem 4.19 in Zygmund [81, Vol. 2, pp.258-261J
that

f3(y) =r df3(x)
- 00

is continuous in R. Integrating the left member of (2.8) by parts, cancelling
it, and using (2.11), we see that
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for t real, t#O. We may deduce that (2.12) still holds for t=O by using
Lebesgue's Dominated Convergence Theorem, (2.11) and the fact that all
moments of df3 are finite, while If'l is of polynomial growth. We may
now use uniqueness of Fourier transforms (Zygmund [81, Vol. 2,
Theorem 10.15, p. 293]) to deduce that

f3(y) =r r (- f'(u)) df3(u) dx,
-00 -00

It follows that 13 is absolutely continuous and

f3'(x) = - r f'(u)f3'(u)du,
-00

so that 13' is also absolutely continuous and

y E ( - 00, 00).

X E ( - 00, 00),

f3"(X) = -f'(x)f3'(x),

Integrating, we obtain for some K> 0,

f3'(X) = K exp( - f(x)),

XE (- 00,00).

X E ( - 00, 00).

The normalization condition (2.3) ensures that K = 1. I
Remark 2.4. Note that the above lemma is still valid iff' is bounded in

each finite interval and if for some 1'f > 0,

f'(x) '" sign(x )14'1, Ixllarge enough,

even if f is .not a polynomial. One needs only to replace 2m by 1+1] in
Step 1 of the lemma. This gives

n even and positive.

instead of (2.7). Then, for the purposes of Step 2 (the Fourier transform
identity),

fOO Ixl n+11f'(x)1 df3(x)::;;; foo [C2 Ixl n + 1 +'1 + C31xn df3(x)
-00 -00

where n + k is the smallest even integer ~ n + 1+ 1'/.

Proof of Theorem 2.2. We know from Lemma 1.1 that there is at least
one admissible solution. Let us now assume that a:, n= 1, 2, 3,..., and b:,
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n = 0, 1,2,..., are an admissible solution. Let us define polynomials p: of
degree n, with leading coefficient y:, by p<f(x) = 1, and

n = 1, 2, 3,...; (2.13)

As is well known (Freud [15, Theorem 2.1.5, p. 60]), there is then a non
decreasing function f3(x), x E (- 00, (0), such that p:, n = 0, 1,2,..., are
orthogonal with respect to df3. We can normalize f3 so that f3( - (0) = °and
so that f3 satisfies (2.2). Next, note that by (2.13) and orthogonality

{CO (a~+lP~+l(X)) P~+l(X) df3(x)
-co

= {CO p:(x){a~+2P~+2(X)+b~+lP~+1(X)
-00

+ a~+ 1 p:(x)} df3(x) (by 2.13))

= f') a:+l(p:(x))2df3(x).
-00

Thus

f" (P:+l(X))2df3(x) = fOO (p:(x)fdf3(x),
-~ -0

n=O, 1,2,....

Hence by changing prJ, we may assume that P: ,n = 0, 1, 2,..., are orthonor
mal with respect to df3. Now let A * be the Jacobi matrix associated with
{a:} and {bin. Exactly as at (1.8), we see that for k = °and n = 0, 1, 2, ...,
and for k= 1 and n= 1, 2, 3,...,

fXl f'(x) p:(x) P:_k(X) df3(x) = (f'(A*))n,n-k
-00

(
0, k=O

= nla:, k= 1

by (1.11) and (1.12). Further, exactly as in the proof of Lemma 1.1, we see
that since a: = y:_ dY:,

k=O

k=l
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Hence for k =°and n =0, 1, 2,..., and for k = 1 and n = 1, 2, 3,...,

fXl (p: P~_k)'(X)df3(x) = f' f'(x)(p: P:-k)(X) df3(x).
-00 -00
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Since {p: 2} and {p: p~-d span the polynomials, we see that (2.1) is true.
Hence (2.3) follows. Finally, as the weight uniquely defines the coefficients
in the recurrence relation, the proof is complete. I

3. BOUNDS

Knowledge on the rate of growth of an and bn is important for further
work. We prove

THEOREM 3.1. Letf and w be given by (1.1) and (1.2), respectively. Then
the admissible solution {an} and {bn} of (1.11) and (1.12) satisfies

and

n= 1, 2, 3,...

n = 1, 2,3, ....

(3.1 )

(3.2)

(3.3 )

Proof First, we note the following inequality: There exists constants C
and C1 such that for every polynomial P of degree at most n,

fOO f~w~

-00 IP(x)1 w(x) dx ~ C1 _CnljI2m) IP(x)1 w(x) dx.

See [30, Lemma 6.1] for a proof of (3.3). Note that in [30]. n 1
/(2m) is

replaced by qn, which for large enough n, is the positive root of the
equation

qnf'(qn) = n.

Clearly qn = {nj(2mCO)}1/(2m)(1 + 0 (1)), n -+ co, and so (3.3) follows. Next,
it is an easy consequence of (1.4) and orthonormality that

a~ + b~ + a~ + 1 = foo x 2(Pn(x) )2W (X) dx
-00

f
C(2n + 2)ljl2m)

~ C1 x 2(Pn(x))2w(x) dx
- C(2n + 2)ljI2m)

~ C1n1/m ,

(by (3.3))

by orthonormality. This yields the upper bounds in (3.1) and (3.2).
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Lower bounds for an are still not so frequent in the literature. We may
remark that the equivalent of (3.1) for f(x) = Ixj" (a real ~ 1) has already
been established by Nevai [49], and that a general result on this matter
can be found in Knopfmacher's work [23]. Here, we shall obtain these
lower bounds by using (1.14) and (1.15), which show that

n/an= foo Pn(x) Pn-l(X) f'(x) w(x) dx
-00

f
C(zn + m)lj(2m)

~ Cl IPn(x) Pn-l(x)1 jf'(x)1 w(x) dx
- C(Zn + m)lj(2m)

~ Czn l - l/(Zm),

(by (3.3))

by the Cauchy-Schwarz inequality, orthonormality, and as jf'(x)j =
O(lxjZm-l), Ixl ~ 00. I

4. CONSISTENT ApPROXIMATE SOLUTION

The expansion of (1.11) and (1.12) as polynomials in {an} and {bn}
allow some guesses on the asymptotic behaviour of the solution. For
instance,

and

solve approximately (1.21) and (1.22). This is an example of consistent
approximate solution:

DEFINITION 4.1. Let f and w be given by (1.1) and (1.2), respectively.
We say that the real numbers a' = (a~, a~, a3"") and b' = (b~, b~, b~, ... )
form a consistent approximate solution of (1.11) and (1.12) if

Fn(a',b')-n= o (n),

Gn(a', b') = 0 (n l - l /Zm),

n ~ 00

n ~ 00.
(4.1 )

The necessity of the small 0 conditions is explained by the remark that
any {a~, b~} satisfying the upper bounds in (3.1) will satisfy (4.1), but with
small 0 replaced by large O. Hence (4.1) is the very least we may ask for an
approximate solution to be useful. A simple consistent approximate
solution ([16, 38]) is

where

a~= [n/(coC(2m))] 112m and b~=O, n=O, 1,2,...,

C(2m) = 2r(2m)/(r(m))2 = 2(2m -1 )!/((m - 1)!)z. (4.2)
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This is obtained by considering only the cox 2m term of f As the neglected
terms have degrees 2m - 1 and 2m - 2 in the a's and the b's, (Lemma 1.3),
the remainders in (4.1) are O(n 1 - 1/(2m») and O(n l - 2/(2m)).

However, a better approximation is achieved if one solves (1.11) and
(1.12) separately for each n, assuming

k= ±1, ±2,..., ±(m-l).

This leaves two nonlinear equations

F(a~, b~) = n and G(a~, b~) = 0, (4.3 )

in two unknowns a~ and b~.

For instance, if m = 2 (cf. [4]), from (1.21) and (1.22),

F(a~, b~) = a~2[12co(a~2+ b~2) + 6Cl b~ + 2C2J = n,

G(a~, b~) =4co(6a~2b~ + b~3) + 3Cl(2a~2 + b~2) + 2C2b~ + c3 = O.

F and G may be described in the following way: Let A be the (doubly
infinite) Toeplitz matrix

(4.4 )

having symbol (;(Z-1 + fJ + (;(z. Thenf'(A) is itself a Toeplitz matrix of sym
bol f'((;(Z-1 + fJ + (;(z). Further, (1.11) and (1.12) become the equations
(4.3), involving the coefficients of z - and ZO in the Laurent expansion of
f'((;(Z-I+fJ+(;(Z) [21]:

F( (;(, fJ) = (;((/'( (;(Z-1 + {3 + (;(z)L 1 (4.5)

and
G((;(, fJ) = (/'((;(Z-1 + {3 + az))o· (4.6)

An interesting alternative form for F((;(, {3) and G((;(, {3) is as Fourier coef
ficients: We see that

F(a, {3) = ((;(In)rf'(fJ + 2(;( cos e) cos ede

and

G((;(, {3) = (lIn) t" f'(fJ + 2a cos (;() de,
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showing that n - F and - G/2 are the partial derivatives in log a and Pof
the Mhaskar and SaIfs function

Mn(a, p) = n log a - (271:)-1 r f(P +2a cos e) de. (4.7)
o

Mhaskar and Saff [46, 47] showed that nth degree polynomials achieving
least L w norm (weighted by (w(x)) 1/2 = exp( - f(x)/2)) must be considered
only in the interval [b~ - 2a~, b~ +2a~],where a~ and b~ maximize
Mn(a, P). It is not surprising to find here that they are also relevant to the
L 2 norm extremal problem (connections between different norms have been
worked in [44]) (cf. [66] ). We are going to prove that the solution of this
maximization problem gives good consistent approximate solutions.

THEOREM 4.2. Let f and w be given by (1.1) and (1.2), respectively. Then
one can find a consistent approximate solution {a~, b~} of (1.11) and (1.12)
with a~ > 0, such that as n ~ 00

a~ = {nl(coC(2m))}1/(2m J(1 + 0 (1)), (4.8)

b~ = 0 (n 1/(2m)), (4.9)

Fn(a',b')-n=O(1), (4.10)

Gn(a', b') = O(n- 1/(2m)). (4.11)

The result of the maximization is described in

LEMMA 4.3. For large n, Mn(a, P) is maximized on E = (0, (0) x
( - 00, (0) at

and (4.12)

where Sl and S2 are convergent power series whose first terms are, respec
tively, (coC(2m))-1/(2m) and -cr/(2mco).

Proof From (Ll) and (4.7), we have

Mn(a, P) = n log a - i~O Ci o";;kf-i/2 C~; i)
x Dka2kp2m-i-2k

XDm_1a2m-2 - "',
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-1 r" 2k (2k)1
D k=(2n) J

O
(2 cos e) d8=2(k!)2;

remark, from (4.2), that C(2k) =2kDb k =0, 1,....
Existence of a maximum of Mn(if., fJ) in E: let us show that Mn(if., Ii)->

- 00 when «(X, fJ) tends towards the boundary of E. This holds obviously
when (X ~ O. Next, if (X2 + fJ2 is large, an upper bound of the form

c~>O

is readily established and shows that M n has a maximum in E. This
maximum is of course reached at a point (if., [3) where the partial
derivatives n - F and G vanish. Remark that Mn(if., fJ) ~ - 00 when
rt.2 + f32 ~ 00 holds for a very large class of functions f: one has just to ask
f(.x)jloglxl -> 00 when x -> ± 00. This condition is indeed considered by
Mhaskar and Saff [46, 47].

At the maximum of Mn(rt., fJ), if. -> 00. Indeed, if a remains bounded,
Mn(a, (3) remains less than C1n (and could become strongly negative, if f3 is
large), whereas the choice a=C2n1/(2m), f3=O gives already M n(a,{3)??:
C3n log n for large n, C3 > 0.

We must have f3 = 0 (if.): if IPI remains larger than some product C4 i1.,

C4 > 0, when iI. -> 00,

m-l
iJMn(iI., fJ)/iJfJ = -co L: D~a2kf32m-2k-1 + O(fJ2m-2),

k=O

will not vanish.
At the maximum, if. must be ~nl/(2m):

will not vanish otherwise.
Series expansions: let Ii = n -1/(2m)if. and x = n -l/m. Then,

and

D~>O

n -1 + l/mG(rt., (3) = 2li2m-2Dm_l(2mco{3 + cd + O(X)

are polynomials in x. At x = 0, these two expressions are equal to zero if
ii=(coC(2m))-I/(2m) and fJ= -c1/(2mco). As the Jacobian matrix is not
singular at this point, the series expansions follow. I
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Proof of Theorem 4.2. Let a~ and b~ maximize Mn(a, [3) on E, as dis
cussed in the lemma. Fn(a', b') and Gn(a', b') are polynomials in a~-m+l' ...'
a~+m-l> b~-m+l> ...' b~+m-l (see Lemma 1.3). From the smooth variation
(4.12) of a~ and b~ with respect to n,

(4.13 )

(4.14 )

Each term of Fn and Gn is a product of k factors (at most 2m for Fn and
2m - 1 for Gn) of the form

where i + j = k. Since all ISpl, Itpl :::;; m -1, (4.13) and (4.14) show that

II = (a~r(l + 0(n- 1))[(b~)j + O(n~l)]

= (a~)\b~)j + 0(ni/(2m)-1),

where a~"'nl/(2m) and b~ = 0(1) have been used, from (4.12). Reconstruc
tion of Fn(a', b') and Gn(a', b') yields therefore

Fn(a', b') = F(a~, b~) + 0(1) = n + 0(1)

Gn(a', b') = G(a~, b~) + 0(n- 1/(2m») = 0(n- 1/(2m»)

as i:::;;k:::;; 2m,

as i:::;;k:::;;2m-1. I

More on consistent asymptotic expansions of an and bn can be found in
[27; 40; 43; 4, Chap. 2 (for m=2); 67; 68 (forf(x)=x6j6)] containing the
seven first terms of the expansion of an ...

These authors show that these symptotic expansions are actually valid
for the solution by using constructions involving partial derivatives of the
functions Fn and Gn'

It will indeed appear in the next section that good formal expansions
(F(a', b'), G(a', b') close to F(a, b), G(a, b)) will imply that a~ and b~ are
themselves close to an and bn and that the link is given by the Frechet
derivative of (F, G).

5. THE FRECHET DERIVATIVE OF (F, G)

It will be found convenient to consider F and G as functions of the
variables 2 log ak and bk:
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DEFINITION 5.1. The Frechet derivative (Jacobian operator) of (F, G) is
the matrix

[
OFn(a'b)/OIOga~ OFn(a,b)/Obkl'

J(a, b) =
OGn(a~b)/aIOga~ OG~a,b)jObk ,

k-1, 2, ..., k-O,1, ....

The quadratic form (J(a, b) p, p) associated to

is the double sum

n= 1, 2'00"

n=0,1,00.,
(5.1 )

00 00 00 00

(J(a,b)p,p)= L L (Tn(TkOFn/ologa~+ L L ()nTkOFn/abk
n~1 k=1 n=1 k=O

00 00 00 00

+ L L Tn(Tk oGn/o log a~ + L L 'n 'k oGn/abb (5.2)
n~Ok~l n~Ok=O

where (Tj, (T2, (T3"00' and '0' Tj, '2"00' are sequences of real numbers of which
at most finitely many are non zero.

The main result of this section is

THEOREM 5.2. Let f and w be given by (1.1) and (1.2), respectively. Let
an> 0, n = 1, 2, 3'00" and bn, n = 0, 1,2,..., be sequences of real numbers
generating orthonormal polynomials 'Pn' n = 0, 1,2'00" with respect to some
nonnegative mass distribution dfJ. Then J(a, b) is symmetric, and (5.2) can be
written

(J(a, b) p, p) = f~oo f~oo L~l an (Tn Pn(U) Pn~l(t)

00 f'(u)- f'(t)
+ n~o Tn Pn(U) Pn(t)J2 (u~ t) dfJ(u) d{3(t). (5.3)

Remark. J(a, b) is positive definite for any admissible sequences
{an, bn} if f is convex. Further, numerical experiments (involving the
solution of (1.11) and (1.12) by Newton iteration [27, 38]) suggest the
following:

CONJECTURE. If f is given by (1.1), J(a, b) is positive definite at the
solution of (1.11) and (1.12).
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The proof of the conjecture requires a clever reading of the integral (5.3)
when df3(u) df3(t) = exp( - f(u) - f(t)) du dt.

The importance of positive definiteness (or, more generally, bounded
invertibility) of J becomes apparent when one wants to compare distances
between values of (F, G) and distances between arguments:

The integrals are taken on the rectilinear path

log ak =log(akf + t(Jko

(Jk = 10g(aZf -log(ak)2

Formally, this gives

bk = bk+ tr ko 0::( t::( 1;

and rk=bZ-bk .
(5.4)

f (In(F~-F~)+ f rn(G~-G~)=r(J(a,b)p,p)dt.
n=l n=O 0

If J is positive definite and has a lower bound A on the path 0::( t::( 1,
applying Schwarz inequality to the left-hand side,

II(F", G")-(F', G')llllpll ~Allpl12

which gives an upper bound on lip II, therefore on aZ/ak and bZ - bk . This is
basically the method that will be used in the next section in order to
establish asymptotic behavior.

Symmetry and positive definiteness of J(a, b) suggests also that the
solution of (1.11) and (1.12) is in some way related to a maximization
problem, just as it happened for the simplified problem (4.3) (Lemma 4.3).

It should be interesting to investigate the extension of Lew and Quarles
method [27] to the present problem.

From (5.1), (1.9), and (1.10), J(a, b) is linear in f, so that, from (1.1),

2m-l
J(a,b)= L (2m-i)cJ2m_i_l(a, b),

i=O

(5.5)

where J2m - i - 1(a, b) is the matrix (5.1) constructed with f'(x) = X 2m - i-r,
i.e., with

and
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It will appear in next section that the behaviour of J(a, b) is in a way
dominated by J2m _ 1(a, b), already known to be positive definite (assuming
Theorem 5.2, which will be proved in a moment). A lower bound will now
be established.

THEOREM 5.3. Let J 2m - 1(a, b) be the matrix (5.1) corresponding to
f'(x) = x 2m -1, and assume that the real sequences a = (a 1 , a2,... ) and b =
(b o, b1 , b2,... ) satisfy

(5.6)

and

(5.7)

where CPo, CPj,'''' are positive and CfJn+ dCfJn -+ 1 when n -+ 00. Then we have
for some C1 >0

CD
(J2m _ 1(a,b)p,p)?;C 1 L {CfJ~ma~+CfJ~m-21"n (5.8)

n~O

for any p = (a 1 , a2,... ; 1"0' r1,"') as in Definition 5.1.

Proof Using (5.3), orthonormality (Parseval relation) and the
inequality

u, t E ( - CfJ, 00 ),

we see that

(J(a, b) p, p) ?;!fCD f [an(}~ Pn -1 (t) +r nPn(t) ]2 t2m - 2df3( t).
-00 n=O

+r2(A 2m - 2) }n n,n (5.9)

by (1.8) and with the convention ao= O. Of course, we assume here that A
is the Jacobi matrix associated with {an} and {bn}. Further, we have used
the fact that only finitely many an and rn are nonzero, to justify all the
interchanges.

Now let A~2) be the quadratic form

640/46/1-7
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Note that for i, j=O, 1, (A 2m - 2)n_i,n_J is a sum of products of 2m-2
elements of the set {X2n-2m+2"'" X2n+2m-2} = {an- m+1 , ..., an+m-l;
bn - m + ll ... , bn + m - 2 } (see Lemma 1.2(iv)). Hence, using the upper bounds
(5.6) and (5.7) we see that each element of the matrix in (5.10) is O(qJ~m-2).

As each eigenvalue of a 2 x 2 matrix is bounded by twice the largest
element (in absolute value), we see that both eigenvalues of this matrix, An
and An say, are O(qJ~m-2).

However, we are more interested in lower bounds for the eigenvalues. It
is clear from (5.9) that A~2) is a nonnegative quadratic form and so An'
An ~ O. To obtain better lower bounds, we shall find a lower bound for the
determinant of the matrix in (5.10). To this end, let Bn be the 2 x (fJ matrix
consisting of thc nth and the (n + 1)th rows of A m- 1

• As A (and so A m- 1
)

is symmetric, we see that the matrix in (5.10) can be represented as BnB;;.
Now we can apply the Cauchy-Binet formula ([13, p.775; 1, Sect. 36]

to evaluate det(BnB;;). In the following lines BU, jl k, I) denotes the 2 x 2
matrix formed from the ith and jth rows, and the kth and lth columns of a
matrix B. We see that

l~it<iz<oo

1::::;; it < iz < 00

~ det(Am - 1(n, n + 11 n + m - 1, n + m )f
= {(A m- 1 )n_l,n+m_2(Am-l )n,n+m-l

_(Am- 1 )n,n+m_2(Am-l )n_l,n+m_l}2

{(anan+1'" an+m- 2)(an+lan+2'" an+m_d}2

from Lemma 1.2(i) and (ii). We obtain

by the lower bound (5.6). As An' An are O(qJ~m-2), we have

We deduce that

and then (5.6) and (5.9) yield the result. I
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Proof of Theorem 5.2. We have already introduced in (5.5) the matrices
Jk(a, b) corresponding to j'(x) = x k. Let

00

J(a,b;z)= L z-k-1Jk(a,b)
k~O

be their generating function. An expression of J(a, b; z) will be established,
from which the coefficients Jk(a, b) will be extracted, and (5.5) will give
(5.3 ).

As

00

(z- X)-l = L Z-k-1 X k

k=O

and

00

(zl-A)-1 = L z-k- 1Ak,
k~O

the matrix J(a, b; z) is obtained by putting

and

in (5.1):

.[ aalog a~ {an(zl- A ),;:L 1}
J(a, b; z) =

a -1al 2 (zl-A)nnog a
k

•

a {_ _I}]
ab

k
anCd-A)n,.n_l .

a ( -1
ab

k
zl-A)n,n

First, note that if x is some parameter occuring in A, then a
straightforward calculation shows that

For x = log aL aA/ax contains only two nonzero elements, namely
(aA/axhk_l and (aA/axh_lb while for X=bb the only nonzero element
of aA/ax'is (8A/8x)k,k' Note too that 8an/8 log a~ = bnk an/2, k, n = 1, 2, 3,....

These operations on (zl- A) -1 may be considered as formal ones, as a
mere summary of operations performed separately on each power A k

, but
(zl - A) -1 is perfectly well defined for nonreal z if the moment problem is
determinate (cf. [80, Sects. 60 and 61]; see also Sect. 7 of the present
paper).
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In view of (1.9), (1.10), and (5.1),

J(a, b, z)

an2a
k [(zI - A);,L l(zI - A);Z;-l + (zI - A);,l(zI - A)k~ 1,n-1]

+(an/2)(zI - A);,;-1 bn,k

an(zI - A );;}(zI - A);;';_l

(ak/2) [(zI - A);,L l(zI - A);;,; + (zI - A);,l(zI - A)k~ 1,n]

(zI -A);,l(zI -A);Z;

(5.11)

Since A and (zI - A) -1 are symmetric, it is clear from (5.11) that the
diagonal blocks in J(a, b) are symmetric. Further we see that the bottom
left-hand element in (5.11) may be replaced by ak[(zI-A);,1(zI-A);,L1]
and hence the off-diagonal blocks in J(a, b) are the transposes of each
another. Thus J(a, b) is symmetric.

The second part of Theorem 5.2 is established using the spectral
representation [2, ChapA; 6, Chap. 7, Sect.1, formula (1.37)].

(zI - A);,l = foo (z - U)-lPn(U) Pk(u) df3(u) (5.12)
-00

which extends (1.8). First, we must clean up the writing of the elements of
the upper left-hand block in (5.11). To do this, we use [80, formula (60.3)
and Theorem 61.1],

(zI - A);,l = Pn(z) qk(Z)

Pk(z) qn(z)

if n~k

if k~n,

where qn(z) = JC<)oo (Z-X)-lpn(X) df3(x), z nonreal (one may use (5.12),
expressing orthogonality of Pn(x) and (Pk(z) - Pk(x) )/(z - x) for k ~ n).
The (n, k) element of the upper left block is then

if n<k

if n>k

if n =k.
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This latter expression turns into a~PnqnPn-lqn-l' as QnPn-l-qn-1Pn=
-1/an (determinant formula in Wan [80, Sect. 60]).

In any case, the element is (zI-A);;}(zI-A);;l:I,n_l'

( b )
=[anak(ZI-A);'k(ZI-A);;l:l,n_l an(zI-A);,l(zI-A)k,~_ll

J a, ,Z -1 -1 ( ) 1( I!'ak(zI - A)n,k(zI - Ah-l,n zI - A ;'k zl- A)k,n J

Now, from (5.12)

J(a,b,z)= flO foo (Z-U)-I(Z-t)-1
~OO -00

x [anakPn(u) Pk(U) Pk-l(t) Pn-l(t)
akPn(U) Pk(u) Pk-l(t) Pn(t)

x dfJ(u) dfJ(t).

Finally, we may rewrite this last matrix as a power series in z -1 using the
identity

00

= L (u- t)-l(Uk - tk) Z-k-l.
k~O

showing

x [anakPn(U) Pk(u) Pk-l(t) Pn-l(t) anPn(u) Pk(U) Pk(t) Pn-l(t)l
akPn(U) Pk(u) Pk-l(t) Pn(t) Pn(u) Pk(u) Pk(t) Pn(t) J

x dfJ(u) dfJ(t).

And (5.5) gives (5.3). I

6. ASYMPTOTIC BEHAVIOUR OF THE SOLUTION

In this section, we shall prove the main result of this paper which solves
a generalization of Freud's Conjecture [16--18]:

THEOREM 6.1. Let f and w be given by (1.1) and (1.2), respectively. Let
an' n = 1, 2, ..., and bn' n = 0, 1, 2, ..., be the admissible solution of (1.11) and
(1.12). Let C(2m) be given by (4.2). Then
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(6.1 )

n --+ 00. (6.2)

Proof First, let us consider new variables

(6.3)

This transformation, which can be considered as a nonuniform scaling, has
been introduced in [56]. It allows significant simplification of asymptotic
behavior determination (cf. [56], where a~ is called An' and [38]). One
has of course to prove that {an} and {6n} have the limits [c o C(2m)]-1/(2m)
and 0 when n --+ 00. The only sequences that we have to consider satisfy
(see (3.1) and (3.2))

and (6.4)

Now, we discuss the writing of Fn and Gn in terms of aand 6: each term
Ci X

2m - i occurring in the polynomial f(x) generates homogeneous
polynomials in an- m+1,..., an+m- 1, bn-m+l>"" bn+m- 1 (see Lemma 1.3).
The total degree of these polynomials in Fn -and Gn are, respectively, 2m - i
and 2m - i - 1. Let us write (1.19) and (1.20) in the form

2m-2
F (a b) = '\' c.F(2m-i)(a b)
n' L.. 1 n "

i=O

2m-l
Gn(a, b)= L ciG~2m-i)(a, b).

i=O

(6.5)

Turning to the a's and 6's, each term of these polynomials exhibits now a
product of factors (n +})1/(2m), with} E some set J c [1 - m, m - 1]

TI x n+
j
= TI (n+ })1/(2m) TI xn+

j
=nk /(2m) TI xn+

j
+0(nk /(2m)-1),

jeJ jeJ jeJ jeJ

where the x's are a's or b's and k is the degree. The 0 term is of course
justified by (6.4). This gives

2m-2
Fn(a, b) = L nl-i/(2m)CiF~2m-i)(a, 6) + 0(1),

i~O

2m-l
Gn(a, b) = L n(2m-i-l)/(2m)CiG~2m- i)(a, 6) + O(n -1/(2m)).

i~O

(6.6)

We are now able to discuss the closeness of {a~}and {a:}, {b~} and
{b:} when (F",G") and (F~,G') are close togeth~r. To this end, let {a:}
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and {b~} denote the admissible solution of (1.11) and (1.12). Further, let
{a~} and {b~} denote the consistent approximate solution with the proper
ties listed in Theorem 4.2. The upper and lower bounds in (3.1) and (3.2),
and therefore (6.4), are valid uniformly on the rectilinear path defined by
(5.4). Remark that iik = (Jb f k=k- I/(2m)'k' From (4.10), (4.11), and (6.6),

2m-2
L n-i(2m)cJF~2m-i){ii", 6") - F~2m-i)(ii', 6' )J = O(ljn),
i~O

2m-I
L n-i(2m)Ci[G~2m-i)(ii", 6") - G~2m-i)(ii', 6')] = O(ljn).

i=O

Each of these differences is now written as an integral on the path (5.4):

2m-2 f.1 [
i~O n- i/(2m)C i 0 ~ iik aF~2m-i)ja log iit

+~ f k aF~2m-i)ja6kJdt= O{ljn),

2m-I f.1[
i~O n-i/(2m lCi 0 ~iikaG~2m-i)jalogiit

+~ f k aG~2m-i)ja6kJdt = O(ljn),

(6.7)

where the interior sums involve k = n - m + 1,..., n + m - 1. Now, we build
bilinear forms by multiplying each of these relations by ii n or f n' for
v~n~ N. Let

p= (0, ..., 0, iiv,"" iiN, 0, ... ; 0, ..., 0, f v , ••• , fN' 0, ... ),

p* = (0, ..., 0, iiv- m+!>'''' iiN+m- 1 , 0, ... ;

0, ...,0, f v - m + I ,"" f N + m - l , 0, ... ).

p(il = (0,..., 0, v- i/(2m)ii v,"" N- i/(2m)ii N, 0, ... ;

0,...,0, v- i/(2m)fv,"" N-i/(2mlfN, 0, ... )

We have, from (5.5)
2m-I I N
L (2m - i) c i f (J2m - i_l(ii, 6) p*, p(i») dt = L Gniin+ 1'/n fn,

i=O 0 v

where Gn and 1'/n are the O(ljn) terms of the right-hand side of (6.7). Let

v-m+l

N

ilpl12= L: ii~+f~,
n=v

v+m-I N+m~1

Ilp11 2
= L a:~+f~+ L a:~+f~.

N-m+l
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The bilinear forms (JZm-i-l(ii, 6) p*, p(i») are easily bounded by const.
v-i/(Zm)(llpIIZ + IlpIIZ), as the «s, 6's, O"s, and i's are themselves bounded
and the bilinear forms are made of a finite number of sums of the form

N v+ Iii
'" n-if(Zm)c 0' 0' .~V-if(Zm)(max IC I) '" (jZ1..J nnn+J""'-': n ~ n'

n = v n v-Iii

N . . 1 v+ Iii
'" n-1!(Zm)D 0' i .~ V-1f(Z)m(max ID I) - '" O'Z + i Z etc.1..J n n n+;""" n 2 L..J n n'

n = v n v -Iii

We have also a lower bound for (JZm _ 1(ii, 6) p*, p) giving
(Jzm _ 1(ii,6)p,p) and a finite number of terms involving O'n and in, n=
v-m+l, ..., v+m-l; N-m+l, ..., N+m-l gathered in Ilpllz. Indeed,
Theorem 5.3 holds, with plain constants for qJn' uniformly on the path
(5.4 ),

(2m-l)Co( (JZm_l(ii,li)jj*,p)dt

~ (2m -1) Cor(Jzm-l(ii, 6) p, p) dt - CIIpllz
o

~Dllpllz_ CIIpf.

The result is

Cauchy-Schwarz's inequality for the right-hand side yields

To get a useful upper bound for Ilpll, we just have to take vlarge enough to
have D - C'v -If(Zm) ~ D' > 0,

D'llpf - C"llpf ~Ev-l/zllpll. (6.8)

As O'n, in, and therefore 11.011 are 0(1), we find Ilpll ~ const. < 00, indepen
dently of N, so that {O'n} and {in} are square summable sequences. In par
ticular,

O'n = log(a~f -log(a~)Z -+ 0,

Remark. With a little supplementary effort, one can deduce from (6.8)
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Le., the admissible solution an, bn of (1.11) and (1.12) and the consistent
approximate solution a~, b~ of Theorem 4.2 are related by

(6.9)

Indeed, let us take N = CfJ and denote

00

11/\11 2= L a~ + f~

Then, 11.011 2= IIPv_m+111 2-IIPv+mI1 2, and (6.8) becomes

D'IIPvI1 2- e"( IIPv-m +111 2- IIPv+mI1 2)~Ev- 1
/
21Ip,11

that can be widened in

D'IIPv+mI1 2- e"( IIPv-m +111 2- Ilpv +mI1 2)
~E(v-m+ l)-1/21IPv_m+lll.

Multiplying by v- m + 1 and introducing D" > 0 such that
(D' + e")(v - m + 1) ~ (D" + e")(v +m) shows that

(D" + e") X v + m ~ E(Xv _ m + d l
/
2 + e"xv _ m + 1:

Xv=vllPvl1 2must remain bounded when v increases. I

The methods developed in [27, 40, 43] (cf. [4, 5, 67]) allow the con
struction of asymptotic expansions superseding the scope of this remark.

7. NONPOLYNOMIAL EXPONENTS;

TOWARDS THE FREUD'S CONJECTURE

How to define the Freud's equations (1.11) and (1.12) when f is not a
polynomial? As already encountered,j'(A) can be defined from the spectral
form (f'(A))n,m = S':'oo Pn(t) Pm(t) f'(t) df3(t), but this brings us back to the
starting point! What matters is that f'(A) depends actually on the two
sequences {an} and {bn}. This will be the case if the corresponding
Hamburger moment problem is determinate (and A is selfadjoint and the
spectral theorem holds [2,6]).

A "hard" (if what precedes may be called a "soft" definition) construc
tion of Fn(a, b) and Gn(a, b) is to work with a sequence of polynomial
approximations of f Convergence asks for completeness of polynomials in
the appropriate L 2 space, but this is also related to the determinateness of
the moment problem [2].
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For f( x) = Ix I" it seems therefore that only a?: 1 can be treated by the
present method. Lemma 7.5 of [30] confirms that polynomials are not
dense in the required Lp spaces if a < 1 since exp( -Ixl IX) is not an extremal
solution of its moment problem (cf. [60, Corollary 7] where the above
result is generalized).

Here is a demonstration of the polynomial approximation technique:

THEOREM 7.1. For f(x)=lxl", a>l, an=(nlC(a))I/", bn=O is a con
sistent approximate solution of (1.11) and (1.12).

Proof We start with the Chebyshev series identity

00

f'(x) = alxl"-lsign x = I Pk T2k +I(X),
o

00

=("-1 I PkT2k +1(xIO,
o

-l::(x::(l

Pk = 2a1! -1/2( -1 )kr((a + 1/2) r(k + 1 - aI2)/[r(1 - a12) r(k + 1+ aI2)]

"-' const.( - 1)k k -" for large k.

If we stop with T2N +1, we obtain a polynomial L.~ Ck,N(,,-2k-2X2k+l and
an error = O( ((IN)" - 1 ), - ( ::( x ::( (. For a fixed n, and with this
polynomial, Fn(a) is approximated by anL.~ Ck,N(,,-2k-2(A 2k +1)n,n_l,
involving an _ 2N,"" an + 2N approximately all equal to an (if N is much
smaller than n). Then, (A 2k +1)n,n_l "-' e\t-1)a~k+l = 1!-122k +1

g tk+ 1/2(1 - t) -1/2dta~k+1,

Fn(a),,-,an1!-1 ( a(2t1/2an)"-1(1- t)-1/2dt

= C(a) a~

8. CONCLUSIONS

Further investigations can be considered, according to the sections of the
present work:

Section 1: Definition of Freud's equations, as just discussed, is linked to
determinateness of the moment problem.

Section 2: Unicity, seems to be rather easy to extend to nonpolynomial
functions J, the case f(x) "-' Ixl 1 + '1, 11 > 0, has already been discussed
(Remark 2.4). One may even consider only f'(x) ,,-,sign(x) rjJ(x), when rjJ(x)
is ultimately increas~ng and -t 00 when x -t ±oo.

Section 3: Bounds, the job is done [9, 10, 23, 30, 31, 49, 55].
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Section 4: Design of good consistent approximate solution, stm
requires technical developments. This will perhaps be the most difficult
task. Remark that Theorem 7.1 does not supply order terms for the error
Fn(a) - n. Smooth function, such asf(x) = (x2 + l)~/2 instead of Ixl a should
make things simpler.

Section 5: Frechet Derivative, seems amenable to extension, through
carefully designed conditions for f, and a theorem of derivability. As for
mula (5.3) has a meaning for non polynomial functions f, one knows what
must be proved.

Section 6: Asymptotics of recurrence coefficients, should welcome more
powerful methods, as there would be less constraints on the consistent
approximate solution needed in the final proof. In this section, as in Sec
tion 4, the fact that A and J are band matrices has been repeatedly used.
This seems to be the main weakness of the present approach.

The history of Freud's Conjectures and their impact on recent develop
ments in the theory of orthogonal polynomials on infinite intervals is dis
cussed in great detail in [57].
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